jueves, 25 de junio de 2015

6 mentiras acerca de la domótica



Enraizado en los primeros años de la domótica, hay muchos conceptos erróneos con los que la gente se quedó. Algunos de ellos son los siguientes:

1. Es muy cara.
La gente tiene el concepto de que la automatización del hogar es muy cara ya que en un principio lo era. Con la maduración de las tecnologías viejas, la incorporación de nuevas tecnologías y la gran producción en masa, los costos se han reducido mucho en la última década.

2. Necesito estar construyendo mi casa.
Muchas personas piensan que no es posible hacer su casa inteligente una vez que ya está construida. Esto es falso. Una casa ya habitada se puede equipar de tal manera que se ofrezcan todos los servicios que a una casa nueva.

3. Se requiere de muchas preparaciones.
Como complemento al punto anterior, se tiene  la noción de que la domótica necesita muchas preparaciones. Esto sigue al punto lógico de pensar que todo tendría que estar conectado por medio de cables. No es así ya que diferentes tecnologías permiten a los equipos comunicarse inalámbricamente o a través del cableado eléctrico ya existente. De esta manera las preparaciones requeridas son mínimas.

4. Es compleja de utilizar.
Uno de los puntos centrales de la domótica es hacerle la vida más sencilla a las personas. El control de la casa se vuelve más sencillo al tener la posibilidad de controlar todo con un control universal de forma gráfica a través de una tablet o smartphone. Este control es adicional a los switches y controles tradicionales, ofreciendo así una solución adicional más sencilla.

5. Si se no hay el internet no funciona.
Las casas inteligentes tienen la posibilidad de conectarse a internet, ampliando el control a cualquier parte del mundo. Si el internet se corta por alguna razón, el control en cualquier parte del mundo se pierde. Sin embargo, la casa inteligente seguirá funcionando de forma local dentro de la casa.

6. No es segura.
La gente suele pensar que el tener acceso a través de internet vuelve la casa más vulnerable. Esto es erróneo ya que con tecnologías de video vigilancia remota se puede vigilar la casa en cualquier momento. También se pueden activar alarmas por detección de movimiento que asegura que no haya nadie deseado dentro de la casa.

Con HomeClick, rompe los mitos de la domótica y ¡disfruta de todos sus beneficios!




martes, 21 de abril de 2015

Ahorro de energía de aparatos electrodomésticos apagados o en standby.

En este post calcularemos de manera sencilla y conservadora cuánta energía podría ahorrarse un departamento pequeño de dos personas si se elimina el consumo de energía de aparatos electrónicos en standby. Los datos fueron tomados del promedio de unas mediciones realizadas por el Lawrence Berkely National Laboratory y se pueden encontrar aquí.



De acuerdo a la tabla anterior, se podrían ahorrar 35.42KWh al mes. Esto puede representar un aproximado de $100 pesos mensuales tomando la tarifa de consumo excedente de la CFE. Como se puede ver este consumo no es nada despreciable.

jueves, 16 de abril de 2015

¿Cómo funcionan los audífonos con cancelación de ruido?

Desde hace ya algunos años existen audífonos diseñados para cancelar el ruido ambiental y proporcionar una mejor experiencia auditiva. Esta tecnología es especialmente útil en ambientes de viaje como autobuses y aviones, en donde el ambiente puede ser muy ruidoso y se requiere de mayor volumen para  enmascarar el ruido.

En resumen, los audífonos con cancelación de ruido escuchan por medio de un micrófono el ruido ambiental y generan el mismo audio pero con fase opuesta para cancelarlo. De esta forma las ondas de sonido del ruido se cancelan por interferencia reduciéndolo enormemente.  En este video de CNET (en inglés) se pueden ver más detalles.


miércoles, 15 de abril de 2015

¿Qué pasa si se va la luz en una casa inteligente?


La respuesta varía de casa inteligente en casa inteligente, pero la respuesta en general es: Lo mismo que en una casa convencional si no se cuenta con un respaldo de energía.


¿Qué tan frecuentes y cuáles son las causas de los apagones?



De acuerdo con la CFE, en México el servicio ha mejorado en los últimos 10 años, yendo de un máximo de 84 minutos al año de interrupción por usuario en el 2007 a 38.52 minutos en el 2014. Las causas son variadas, pero en Estados Unidos el 44% de los apagones están relacionados con eventos de clima (tormentas, viento, lluvias, terremotos, etc.). El 29.7% es causado por malfuncionamiento de los equipos.


Normalmente nunca pensamos en los apagones hasta que suceden, por lo que a veces es difícil estar preparado. Una casa inteligente completa tiene un respaldo de energía para suministrar a los aparatos eléctricos esenciales para el usuario. Esto puede ser el refrigerador, luz en áreas principales, la bomba del agua, o lo que cada persona crea que es lo más importante. Este respaldo puede consistir de una planta de energía o de un respaldo de baterías. Dependiendo del uso que se le vaya a dar, uno puede ser más conveniente que el otro. Cuando se requiere mayor energía por mayor tiempo el generador es la mejor opción. Cuando se requiere de menor energía, principalmente para dispositivos electrónicos el banco de baterías es la mejor opción.

En caso de no contar con un respaldo de baterías los efectos son similares a los de una casa convencional. No se cuenta con iluminación en toda la casa, los dispositivos eléctricos y electrónicos dejan de funcionar (T.V., computadoras, estéreos, refrigeradores, etc.). Es importante mencionar que instalaciones tales como accesos controlados por electroimán, normalmente se hacen con un respaldo de baterías para estas ocasiones. Un acceso con contrachapa eléctrica puede seguirse utilizando normalmente con llave.

Se pueden también contar con luces de emergencia que se enciendan en caso de que detecten un apagón. Estas normalmente van conectadas a los contactos y cargan una batería. Al detectar que hay un corte en el suministro eléctrico, estas se encienden con la batería que se ha estado cargando.

HomeClick
Querétaro, Qro.

Fuentes:

jueves, 9 de abril de 2015

¿Qué preparaciones necesita una casa inteligente?

Muchas personas se desaniman ante la idea de tener una casa inteligente debido a que tienen una idea preconcebida de que se necesitan hacer muchas preparaciones muy caras. Esta idea es incorrecta ya que normalmente las preparaciones que se requieren son mínimas. Éstas varían por tipo de equipos que se deseen meter.

Iluminación

La nueva tendencia del mercado en la domótica es usar sistemas descentralizados, ya que son más baratos y requieren menos preparaciones. Con este tipo de sistemas no se requiere preparación alguna, ya que para hacer control de iluminación se puede cambiar un apagador convencional por uno inteligente. La única condición es que el cable del neutro llegue también al apagador inteligente, cosa que es práctica común.

Audio y Video

Para poder centralizar el audio e ingresarlo al sistema es necesario saber el equipo qué se va a utilizar. Normalmente sólo se requiere de una conexión de red, ya sea cableada o inalámbrica. Esto último dependerá de las características del equipo de audio. La mayoría de los equipos más nuevos ya incluyen conexión inalámbrica por lo que únicamente es necesario asegurarse que se tenga buena cobertura de red.

Es necesario tener en cuenta que se necesitan cablear las bocinas al amplificador. Este cableado normalmente se hace a través de ducterías previamente hechas. En caso de que no se tengan, se puede romper la pared y resanarla, o pasar el cable a través de canaletas.

Existen bocinas inalámbricas tal como las SONOS o BOSE Soundtouch. Cuando se tiene una sola bocina, o un soundbar no se requiere amplificador. Si se quisieran poner bocinas con este tipo de sistemas también se necesitan cablear a cada amplificador. Estos sistemas tienen la ventaja de que el audio se conecta localmente entre par de bocinas y cada amplificador. Los amplificadores se comunican entre sí para lograr la centralización del audio.

Se puede controlar el video con el sistema sin necesidad de hacer ninguna preparación obligatoria. Los equipos para manejar TVs, blu-rays, Apple TVs, etc. sólo necesitan una buena cobertura de red inalámbrica en caso de que no se deseen cablear.


Casas Inteligentes

Seguridad

En el caso de cámaras de seguridad existen opciones alámbricas e inalámbricas. Para la opción inalámbrica se necesita una buena cobertura de red y una toma de corriente cerca de donde se pretende instalar. Para la opción alámbrica es necesario cablear al lugar donde se encuentra el site, o donde se encuentre el NVR.
En el caso de control de accesos se necesita cablear de la contrachapa eléctrica a la fuente de energía, o al kit de respaldo con batería. Convencionalmente es necesario cablear el botón de acceso, o del sistema de lectura biométrica a la fuente o al kit, sin embargo con HomeClick esto se puede realizar inalámbricamente.

Otros


Con HomeClick prácticamente toda la tecnología es inalámbrica, por lo que se pueden incorporar fácilmente la mayoría de tus dispositivos favoritos al sistema sin mayores preparaciones. Esto incluye: fuentes, persianas, motores de rejas, cortinas de albercas, aires acondicionados, chimeneas de gas,  ¡y muchas cosas más!

HomeClick Querétaro, Qro.

jueves, 26 de marzo de 2015

Caracerísticas en cámaras de seguridad

Muchas casas y negocios comerciales están optando por incorporar cámaras de vigilancia para aumentar su seguridad. Existen muchos modelos en el mercado, pero ¿qué características son las necesarias para qué aplicación? Te mostramos algunas de las características más comunes en las cámaras.

Tipo de comunicación

En resumen existen dos tipos de tecnologías: la analógica y la IP. Las cámaras analógicas transmiten el video directamente a través del cable, en señales similares a como funcionaba la tecnología de televisión por cable analógico. Las cámaras IP transmiten el video digitalmente a través del protocolo de red TCP/IP. La ventaja de las cámaras analógicas es que son más baratas y si ya tienes una instalación hecha, puedes seguirla utilizando solamente cambiando las cámaras. La ventaja de las cámaras IP es que la transmisión es inmune a ruidos, cosa que es más notable en instalaciones con cámaras muy distantes. Además se pueden ver a través de internet sin necesidad de un NVR.

AWB (Automatic White Balance)

Balance automático de blancos por sus siglas en inglés. Debido a las diferencias en iluminación, el color absoluto en las fotos puede no parecernos natural, ya que los humanos somos muy buenos en procesar los colores de acuerdo al entorno. El balance inteligente de blancos toma en cuenta la temperatura de la luz, para que los blancos siempre se vean blancos sin importar las condiciones de iluminación, similar a como lo hacemos los humanos.

BLC (Back Light Compensation)

Compensación de luz de fondo por sus siglas en inglés. Esta función corrige las imágenes en las que hay mucha iluminación de fondo y por lo tanto el frente se ve oscurecido. Esta función es útil en situaciones como cuando una cámara está colocada en el interior viendo fuera de un edificio en un día soleado, cuando la imagen de interés es en el interior. También para ver placas de coches en la noche cuando los faros están encendidos.


WDR (Wide Dynamic Range)

Rango dinámico amplio por sus siglas en inglés. Esta función amplía las ventajas que ofrece el BLC. La cámara ajusta automáticamente la exposición de las diferentes áreas en el cuadro para obtener una iluminación óptima en cada zona. Normalmente se alcanza este objetivo con dos exposiciones, una larga y una corta para contrarrestar las diferencias de iluminación en diferentes áreas de la imagen.
Existe también el D-WDR (Digital Wide Dynamic Range) o rango dinámico amplio digital. Tiene el mismo efecto que el WDR convencional. La diferencia reside en que el resultado se obtiene a través de un algoritmo que mejora la imagen sin tomar realmente diferentes exposiciones. Normalmente se obtienen resultados superiores utilizando un WDR convencional, sin embargo la calidad del D-WDR varía mucho dependiendo del algoritmo que utilice la cámara.


Tengas una casa inteligente o convencional, una oficina, local comercial, o simplemente disfrutes de la confianza que te da la seguridad de una cámara con HomeClick puedes contar con las mejores marcas en cámaras IP.

HomeClick. Casas inteligentes y automatización de espacios.

martes, 10 de marzo de 2015

¿Qué tipo de foco te conviene usar?

Los focos incandescentes han ido disminuyendo su popularidad con el paso de los años, especialmente de la última década. Aunque aparentemente siguen siendo la opción más barata, a largo plazo terminan saliendo más caros, ya que hay que reemplazarlos más seguido y gastan más energía, tal como se muestra en el siguiente infográfico.


Las Tecnologías

Incandescente


Es prácticamente la misma tecnología que inventó Thomas Edison. Funciona al calentar un filamento de tungsteno por medio de una corriente eléctrica. La mayoría de la energía de estos focos es desperdiciada en forma de calor, por lo que no son muy eficientes al transformar la energía eléctrica en lumínica.

Halógeno


Los focos de halógeno son realmente focos incandescentes que dentro tienen una pequeña cantidad de algún gas halógeno. Este ayuda a prolongar la vida del filamento y a que disminuya un poco su consumo de energía.

CFL (Lámpara Fluorescente Compacta por sus siglas en inglés)


Este tipo de focos funcionan ya que dentro tienen algún gas noble. A este gas se le aplica un voltaje muy alto para que se ionice. Al ionizarse puede conducir electricidad que suelta electrones que son absorbidos por una capa de fósforo y estos son los que realmente producen la luz. Estos focos son los que comúnmente son llamados ahorradores. La mayoría de estos focos no son dimmeables, aunque existen algunos modelos que sí lo son.

LED (Diodos Emisores de Luz por sus siglas en inglés)


Esta tecnología es la más nueva y la más cara en cuestión de iluminación. Está compuesto de varios LEDs, que funcionan emitiendo luz cuando la electricidad pasa por ellos. Por su propia naturaleza consumen muy poca electricidad, teniendo la desventaja de que su tamaño es limitado. Generalmente un foco de esta tecnología tienes un arreglo de varios LEDs.

Conclusiones


Dentro de estas tecnologías la LED es la más eficiente. Debido a su precio, aún no es tan adoptada como las otras tres. Por costo, el foco que de momento conviene más utilizar es el CFL o el foco ahorrador de luz común. Dependiendo de la aplicación puede ser más conveniente un foco LED, especialmente si se va a utilizar con un dimmer.

Controla tus focos y tus lámparas favoritas instaladas en tu casa inteligente con HomeClick.

lunes, 16 de febrero de 2015

Controla tu casa con Siri y el nuevo HomeKit

Uno de los últimos anuncios de Apple es que entraba al mercado de la automatización del Hogar. Con esto, Apple lanzaba al público HomeKit, un protocolo que pretende que Siri te ayude a controlar las luces, puertas, cortinas, aires acondicionados y todo lo que tengas conectado tu casa. En solo minuto y medio Apple explicó que pretende unificar a diversas marcas bajo un solo protocolo.

Este anuncio viene después de la presión que Google metió en el mercado con la compra de la compañía Nest, compañía dedicada a la fabricación de termostatos inteligentes. Con esto dejan claro que están apostando por hacer realidad el "Internet of Things". Apple también quiere su rebanada del pastel, así que entra al mercado anunciando HomeKit.

Después de el anuncio, muchas empresas buscaron incluir inmediatamente esta tecnología. Una de ellas es Insteon, la cual anuncia su nueva app que incorpora esta tecnología. Con HomeClick puedes controlar cualquier dispositivo de Insteon con esta nueva tecnología. Avísale a Siri cuando te quieras ir a dormir para que apague todas las luces de la casa y se asegure de que la puerta está cerrada con seguro.


viernes, 30 de enero de 2015

OGG vs MP3 vs AAC vs FLAC vs WAV: Comparación de formatos de audio

Para los amantes de la música digital existen muchos formatos de audio en los que se puede guardar la música. En total se resumen en dos: con pérdida de datos y sin pérdida de datos. Cualquier audiófilo sabrá que para obtener la mejor calidad es mejor usar formatos sin pérdida de datos, pero, ¿qué tanto provecho se saca de estos formatos? Aunque han crecido mucho los medios de almacenamiento, para la mayoría de las personas la mejor opción sigue siendo usar formatos con compresión tales como mp3, ogg y aac. En este post hacemos una comparación entre estos formatos, así como wav y flac. Si deseas leer la versión corta y menos técnica, puedes hacerlo aquí.

La comparación consiste en un clip de sonido de 42 segundos de lluvia obtenido de freesound.org en formato wav a 24 bits. Se escogió este sonido ya que es un sonido real muy parecido al sonido blanco con respecto a que tiene componentes en un gran rango de frecuencias. Este tipo de sonidos es más difícil de comprimir, ya que muchos codecs utilizan información perceptual para descartar información que no percibimos y así ahorrar espacio. Esto se ve muy claramente en aspectos como la frecuencia de corte de varios formatos, como se muestra a continuación en algunos espectrogramas.

En esta ocasión se analizarán varios formatos mencionados en la siguiente tabla. Algunos de los sitios más comunes que los utilizan son mencionados también:

Formatos de audio comunes y sus usos


Comparación de espectrogramas:
Empezamos con una comparación de los espectrogramas, que fueron obtenidos con Sonic Visualizer. Para un mejor análisis visual es mejor comparar los espectrogramas contra el original en una visualización de pantalla completa, cambiando entre uno y otro para ver las pequeñas diferencias.


Formatos sin pérdida de datos:

WAV 16-bits

FLAC 16-bits
Formatos con compresión con pérdida de datos:


aac 160-kbps
mp3 128-kbps

mp3 256-kbps

mp3 320-kbps
ogg 96-kbps
ogg 160-kbps

ogg 320-kbps
Al comparar los espectrogramas se puede apreciar que los formatos flac y wav son virtualmente idénticos al sonido original wav de 24 bits. El formato aac no presenta frecuencia de corte, pero al comparar más de cerca se ve que en el espectrograma cambia un poco la textura entre los colores verdes y amarillos.  También, la cantidad de información representada por la línea verde a aproximadamente 5KHz se atenúa un poco en intensidad.

En el caso de los mp3s, lo más notorio son las frecuencias de corte que se tienen en las diferentes calidades. En 128 kbps además se ve cierta pérdida de información  en frecuencias más bajas, esto se puede ver en forma de "granos" de color verde oscuro. En el caso de las calidades 256 y 320 kbps se puede notar que entre ellas son casi idénticas entre ellas excepto por la frecuencia de corte. Sin embargo, se puede ver que la "textura" del espectrograma varía con respecto al original.

Para los formatos ogg se puede notar que la "textura" parece cambiar menos fuera de la frecuencia de corte del filtro. A 96 kbps la línea a 5KHz se encuentra un poco modificada, pero a 160 y 320 kbps se mantiene prácticamente idéntica. En el caso de 320 kbps las diferencias son casi nulas con respecto al audio original. Para las tres calidades, inclusive para 96 kbps, debajo de los 5KHz las diferencias con el audio original son muy pequeñas, favoreciendo a las calidades más altas.

Comparación por descriptores de audio:
Después de revisar los espectrogramas se extrajeron dos descriptores de audio (Spectral Centroid y Spectral Spread) para intentar entender cómo afecta la compresión del audio al contenido espectral. Esto se hizo para ventanas de 10.67 ms de audio que al final se promediaron y restaron para obtener un sólo número por clip de audio.

El Spectral Centroid nos dice dónde se encuentra el mayor peso de frecuencias en el audio, siendo una medida de tendencia central. El Spectral Spread es una forma de medir el ancho de banda del espectro. Al medir estos dos descriptores, podemos darnos cuenta que tanto cambia el contenido espectral al convertir a los diferentes formatos.

Dentro de los resultados se tomaron en cuenta el promedio, la variación contra el promedio y la suma de la diferencia contra el original por cada ventana, que se normalizó a medida de porcentaje entre el formato más diferente (100%) y el menos diferente (0%).



Dentro de estos resultados se puede notar que el cambio en el espectro más grande ocurre en los formatos mp3. El Spectral Centroid tiende hacia un valor más bajo. En primera instancia esto parece comprensible si se toma en cuenta que se cortan la frecuencias más altas. Sin embargo, el cambio es mucho mayor que en los archivos ogg, que también presentan este fenómeno. También se reduce mucho el ancho de banda descrito por el Spectral Spread en los archivos mp3.

Los archivos flac y wav presentan cambios que son prácticamente nulos en cuanto a estos descriptores. El archivo aac presenta una gran diferencia medida ventana por ventana en cuanto a el centro de la frecuencia, al igual que los formatos mp3. Los archivos ogg parecen conservar mejor el espectro en cuanto al resto de archivos con compresión con pérdida.

Comparación por audio residual:
El audio residual es un buen indicio para comparar que tan semejantes son dos archivos de audio que en principio deberían de ser iguales. Al hacer la resta matemática de estos dos archivos de audio se puede ver cuál es la diferencia que existe entre estos dos. Para hacer esta resta se utilizó un script de python utilizando ffmpeg para decodificar los diferentes formatos. Todos los archivos de audio residual se guardaron en wav a 16 bits.

A continuación se muestran los espectros del audio residual. Entre más oscuro se ve el espectrograma quiere decir que hay menos energía y por lo tanto es más parecido al audio wav de 24 bits original. En caso de querer escuchar los audios residuales puedes hacerlo aquí.

Formatos sin pérdida de datos:

WAV - 16 bits residual

FLAC residual


Formatos con compresión con pérdida de datos: 

aac 160 kbps residual


mp3 128 kbps resiudal

mp3 256 kbps residual
mp3 320 kbps residual

ogg 96 kbps residual

ogg 160 kbps residual

ogg 320 kbps residual


Al comparar los espectrogramas se puede ver claramente que los formatos sin pérdida de datos tienen un espectrograma casi vacío. Esto indica que los archivos son prácticamente iguales y que se pierde muy poca información al bajar de 24 a 16 bits. La diferencia en los espectros probablemente es dada por el "dithering" que puede meter el algoritmo al hacer bajar la resolución.

De los formatos con pérdida de datos, a primera vista el aac parece tener el espectro más lleno, sugiriendo que tiene la mayor diferencia contra el audio original. Los formatos mp3 parecen irse pareciendo más al audio original conforme sube la resolución. Algo a notar es que se alcanza a distinguir la línea de frecuencia de corte del codificador.

Con respecto a los archivos ogg, los archivos mp3 parecen tener un menor contenido residual, con excepción del audio a 320 kbps, en el cual el archivo ogg tiene un espectro más vacío. Cabe notar que en todos estos formatos la información debajo de los 4KHz está muy presente todavía. Esto es en parte porque en el archivo original es donde más información se concentra.

Se puede hacer un análisis por medio de un descriptor para el audio residual y hacer la comparación de manera más objetiva. En este caso se utiliza la medida de energía RMS del archivo residual y se compara en porcentaje con respecto a la energía del audio original. De esta forma un resultado más bajo nos dará un mejor índice que el audio es más parecido al original.

Energía de audio residual
En la tabla podemos ver que el formato aac tiene mucho más residuo que los otros formatos. En un principio se pensó que era un error, sin embargo al repetir la codificación de audio y volver a hacer la prueba se obtuvo el mismo resultado. Una explicación para esto puede ser que el algoritmo no codifica bien los sonidos de naturaleza estocástica, tal como con el que estamos lidiando. De esta tabla se pueden corroborar las mismas conclusiones que con los espectrogramas.

Tamaño y compresión:
Por último se compara el tamaño de los archivos. El debate principal involucra que tanta calidad sacrifica el archivo para obtener un menor tamaño. En la siguiente tabla se muestran los tamaños de los diferentes archivos en Kilobytes, así como su compresión relativa al archivo original.



Al bajar la resolución del archivo WAV de 24 a 16 bits se reduce naturalmente el tamaño del archivo. Para los archivos ogg se puede notar que tienen una compresión más grande que los archivos mp3 y aac (160 kbps), excepto para la calidad de 320 kbps, en donde es mayor la compresión del archivo mp3.

Conclusiones:
Después de este análisis se pueden hacer varias conclusiones. En primer lugar cabe constatar que este análisis sólo es un ejemplo, y los resultados pueden variar con otros tipos de clips de audio, así como con otros métodos de análisis. También es importante tener presente que se eligió un sonido de naturaleza estocástica ya que es probablemente un peor escenario para varios algoritmos de compresión. Su eficiencia puede ser diferente con sonidos más armónicos.

Es importante saber el uso que se le va a dar al audio, ya que hay muchas situaciones en las que es muy fácil elegir el formato adecuado. Si lo más importante es la calidad, y el espacio no es ningún problema, entonces el audio original con la mayor calidad posible siempre será la mejor opción. Si por otro lado, el espacio es prioridad, y además las bocinas donde se reproducirá no son muy buenas, la mayor compresión aunque tenga calidad más baja será la mejor opción. Es importante ser coherentes en cuanto a dónde se va a reproducir el audio, ya que no serviría de mucho reproducir con la mejor calidad posible en unas bocinas de teléfono móvil o portátiles de bluetooth.

Asignando un valor de 0 a 10 para cada prueba se obtienen los resultados de la siguiente tabla. Cabe aclarar que para los totales se tomó un peso para que la compresión representara el 33% y 50% del valor total en el Total 1 y Total 2 respectivamente. Se hizo de esta manera para sacar dos conclusiones diferentes, una favoreciendo a la calidad, y la otra a la compresión.

Total de puntuación para la comparación entre los diferentes formatos.
* La compresión equivale al 33% del total** La compresión equivale al 50% del total
Como conclusión final se puede decir que el formato ogg es el que mejor relación ofrece entre calidad y tamaño, de acuerdo a este análisis. Es probablemente por esta razón que Spotify eligió este formato para su música, ya que ayuda a conservar el ancho de banda sin sacrificar mucha calidad.

Para conseguir los mejores equipos que reproduzcan este tipo de formatos, y más, visítanos en http://www.homeclick.com.mx/audio.

P.S. Si te interesa conseguir los datos o los archivos originales puedes hacerlo en https://drive.google.com/folderview?id=0ByL9I01q5KNbVlRmODJCQXlEbGM&usp=sharing